Supporting information for:

Formation of Benzo[b] fluorenes and the Benzo[a] fluorene Core of the Fluostatins by Cyclization of Diaryldiynones

Carmen Atienza, Cristina Mateo, Óscar de Frutos, and Antonio M. Echavarren*

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Methods: NMR spectra were recorded at 23 °C. Elemental analyses were performed at the UAM (SIdI). Solvents were purified and dried using standard procedures. Chromatography purifications were carried out using flash grade silica gel with distilled solvents. All reactions except for the cyclizations under conditions B (Table 1), were carried out under an Ar atmosphere.

6a: *n*BuLi (0.39 mL 2.5 M in hexane) was slowly added to a solution of 2-ethynylanisole (**5a**) (129.4 mg, 0.98 mmol) in THF (4 mL) at 0 °C. After stirring for 30 min, a solution of **4** (200.0 mg, 0.98 mmol) in THF (4 mL) was added. The reaction mixture was stirred at room temperature for 5 h, diluted with EtOAc and washed with saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), the solvent was evaporated, and the residue was chromatographed (30:1Hexane/EtOAc) to give **6a** as a yellow oil (235 mg, 71%): ¹H NMR (CDCl₃, 300 MHz) δ 7.84 (dd, J = 8.1, 1.2Hz, 1H), 7.49 (dd, J = 7.7, 1.6 Hz, 1H), 7.42 (dd, J = 7.3, 1.6 Hz, 1H), 7.34 (td, J = 7.3, 1.2Hz, 1H), 7.29-7.22 (m, 2H), 6.88 (td, J = 8.5, 0.8 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 6.15 (s, 1H), 3.81 (s, 3H), 3.30 (br s, 1H, OH), 0.27 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 159.97 (C), 142.87 (C), 133.56 (CH), 132.44 (CH), 129.82 (CH), 128.93 (CH), 127.87 (CH), 126.81 (CH), 121.20 (CH), 120.20 (CH), 111.61 (C), 110.49 (C), 102.32 (C), 100.12 (C), 92.23 (C), 82.72 (C), 63.50 (CH), 55.55 (CH₃), -0.27 (CH₃).

6b: *n*BuLi (0.52 mL 2.5 M in hexane) was slowly added to a solution of phenylacetylene (**5b**) (133.8 mg, 1.31 mmol) in THF (10 mL) at 0 °C. After stirring for 30 min, a solution of **4** (264.8 mg, 1.31 mmol) in THF (10 mL) was added. The reaction mixture was stirred at room temperature for 16 h, diluted with EtOAc and washed with saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), the solvent was evaporated, and the residue was chromatographed (7:1Hexane/EtOAc) to give **6b** as a yellow oil (203.5 mg, 51%): ¹H NMR (CDCl₃, 200 MHz) δ 7.73 (d, J = 7.54 Hz, 1H), 7.53-7.43 (m, 3H), 7.40-7.28 (m, 5 H), 6.06 (s, 1H), 0.27 (s, 9H); ¹³C NMR (CDCl₃, 50 MHz; DEPT) δ 142.83 (C), 132.56 (CH), 131.61 (CH), 128.95 (CH), 128.28 (CH), 128.05 (CH), 127.88 (CH), 126.47 (CH), 122.41 (C), 120.94 (C), 102.27 (C), 100.47 (C), 88.17 (C), 86.14 (C), 63.46 (CH), 0.28 (CH₃).Anal. Calcd for C₂₀H₂₀OSi: C, 78.90; H, 6.62. Found: C, 78.52; H, 7.04.

6c: *n*BuLi (0.61 mL 2.5 M in hexane) was slowly added to a solution of 2-ethynyltoluene (**5c**) (178 mg, 1.53 mmol) in THF (5 mL) at 0 °C. After stirring for 30 min, a solution of **4** (309.6 mg, 1.53 mmol) in THF (5 mL) was added. The reaction mixture was stirred at room temperature for 16 h, diluted with EtOAc and washed with saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), the solvent was evaporated, and the residue was chromatographed (7:1Hexane/EtOAc) to give **6c** as a yellow oil (373.5 mg, 77%): ¹H NMR (CDCl₃, 300 MHz) δ 7.83 (dd, J = 7.7, 1.2Hz, 1H), 7.59 (dd, J = 7.3, 1.2Hz, 1H), 7.52 (br d, J = 7.3Hz, 1H), 7.43 (td, J = 7.7, 1.6 Hz, 1H), 7.33 (td, J = 7.7, 1.6 Hz, 1H), 7.30-7.25 (m, 2H), 7.23-7.16 (m, 1H), 6.22 (s, 1H), 3.40 (br s, 1H, OH), 2.51 (s, 3H), 0.37 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 143.04 (C), 140.14 (C), 132.61 (CH), 131.94 (CH), 129.21 (CH), 128.96 (CH), 128.32 (CH), 127.84 (CH), 126.39 (CH), 125.31 (CH), 122.18 (C), 120.89 (C), 102.37 (C), 100.37 (C), 92.12 (C), 85.14 (C), 63.52 (CH), 20.55 (CH₃), -0.28 (CH₃). Anal. Calcd for C₂₁H₂₂OSi: C, 79.20; H, 6.96. Found: C, 78.78; H, 7.39.

6d: *n*BuLi (0.5 mL 2.5 M in hexane) was slowly added to a solution of 3-ethynyltoluene (**5d**) (188 mg, 1.61 mmol) in THF (5 mL) at 0 °C. After stirring for 30 min, a solution of **4** (325.3 mg, 1.53 mmol) in THF (5 mL) was added. The reaction mixture was stirred at room temperature for 16 h, diluted with EtOAc and washed with saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), the solvent was evaporated, and the residue was chromatographed (7:1Hexane/EtOAc) to give **6d** as a yellow oil (248.8 mg, 49%): ¹H NMR (CDCl₃, 300 MHz) δ 7.76 (br d, J = 7.3Hz, 1H), 7.53 (br d, J = 7.3Hz, 1H), 7.39 (br d, J = 7.3Hz, 1H), 7.31-7.27 (m, 3H), 7.21 (br t, J = 7.6 Hz, 1H), 7.14 (br d, J = 7.3Hz, 1H), 6.09 (s, 1H), 3.21 (s, 1H, OH), 2.32 (s, 3H), 0.32 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 142.90 (C), 137.74 (C), 132.64 (CH), 132.25 (CH), 129.24 (CH), 129.01 (CH), 128.70 (CH), 128.01 (CH), 127.95 (CH),126.11 (CH), 122.26 (C), 121.04 (C), 102.32 (C), 100.51 (C), 87.79 (C), 86.45 (C), 63.58 (CH), 21.03 (CH₃), -0.23 (CH₃). Anal. Calcd for C₂₁H₂₂OSi: C, 79.20; H, 6.96. Found: C, 78.63; H, 7.41.

6e: *n*BuLi (0.54 mL 2.5 M in hexane) was slowly added to a solution of 4-ethynyltoluene (**5e**) (157.1 mg, 1.35 mmol) in THF (10 mL) at 0 °C. After stirring for 30 min, a solution of **4** (273.3 mg, 1.31 mmol) in THF (10 mL) was added. The reaction mixture was stirred at room temperature for 16 h, diluted with EtOAc and washed with saturated aqueous NaCl solution. The organic layer was dried (Na₂SO₄), the solvent was evaporated, and the residue was chromatographed (7:1Hexane/EtOAc) to give **6e** as a yellow oil (230.4 mg, 54 %): ¹H NMR (CDCl₃, 200 MHz) δ 7.74 (br d, J = 7.5 Hz, 1H), 7.52 (br d, J = 7.5 Hz, 1H), 7.43-7.25 (m, 5H), 7.12 (br d, J = 7.5 Hz, 1H), 6.05 (d, J = 5.4 Hz, 1H), 2.91 (d, J = 5.4 Hz, 1H, OH), 2.35 (s, 3H), 0.28 (s, 9H); ¹³C NMR (CDCl₃, 50 MHz; DEPT) δ 142.88 (C), 138.26 (C), 132.45 (CH), 131.43 (CH), 128.89 (CH), 128.73 (CH), 127.77 (CH), 126.41 (CH), 120.89 (C), 119.31 (C), 102.33 (C), 100.35 (C), 87.44 (C), 86.25 (C), 63.41 (CH), 21.21 (CH₃), -0.28 (CH₃). Anal. Calcd for C₂₁H₂₂OSi: C, 79.20; H, 6.96. Found: C, 78.69; H, 7.13.

3a: BaMnO₄ (1.501 g, 5.86 mmol) was added to a solution of **6a** (980.2 mg, 2.93 mmol) in CH_2Cl_2 (20 mL) at room temperature. The reaction mixture was stirred for 3 days, filtered through Celite and evaporated. The residue was chromatographed (8:1Hexane/EtOAc) to give **3a** as a yellow solid (774 mg, 79%): ¹H NMR (CDCl₃, 300 MHz) δ 8.33-8.29 (m, 1H), 7.62-7.56 (m, 2H), 7.51-7.39 (m, 3H), 6.99-6.91 (m, 2H), 3.93 (s, CH₃), 0.22 (CH₃); ¹³C NMR (CDCl₃, 75 MHz) δ 177.21 (C), 161.76 (C), 138.89 (C), 134.98 (CH), 132.47 (CH), 132.05 (CH), 128.04 (CH), 122.57 (C), 120.59 (CH), 110.83 (CH), 109.55 (C), 992.00 (103.22 (C), 100.90 (C), 92.00 (C), 90.30 (C), 55.83 (CH₃), -0.25 (CH₃).

3b: BaMnO₄ (343.0 mg, 1.34 mmol) was added to a solution of **6b** (203.5 mg, 0.67 mmol) in CH₂Cl₂ (20 mL) at room temperature. The reaction mixture was stirred for 3H, filtered through Celite and evaporated. The residue was chromatographed (9:1Hexane/EtOAc) to give **3b** as a yellow oil (184.1 mg, 91%): ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (dd, J = 7.9, 1.9 Hz, 1H), 7.72-7.59 (m, 3H), 7.56-7.36 (m, 5H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 177.48 (C), 138.88 (CH), 134.99 (CH), 133.14 (CH), 132.27 (CH), 131.19 (CH), 130.77 (CH), 128.61 (CH), 128.24 (CH), 122.60 (C), 120.18 (C), 102.90 (C), 101.36 (C), 93.30 (C), 87.97 (C), -0.26 (CH₃). Anal. Calcd for C₂₀H₁₈OSi: C, 79.43; H, 6.00. Found: C, 79.15; H, 6.12.

3c: BaMnO₄ (395.1 mg, 1.54 mmol) was added to a solution of **6c** (245.3 mg, 0.77 mmol) in CH₂Cl₂ (15 mL) at room temperature. The reaction mixture was stirred for 17 h, filtered through Celite and evaporated. The residue was chromatographed (10:1hexane/EtOAc) to give **3c** as a yellow oil (227.5 mg, 93%): ¹H NMR (CDCl₃, 300 MHz) δ 8.11 (dd, J = 7.7, 1.6 Hz, 1H), 7.59 (dd, J = 7.3, 2.0 Hz, 1H), 7.58 (dd, J = 6.5, 1.0 Hz, 1H), 7.47 (td, J = 7.7, 1.6 Hz, 1H), 7.41 (td, J = 7.3, 1.2Hz, 1H), 7.31 (td, J = 7.7, 1.2Hz, 1H), 7.22 (br d, J = 8 Hz, 1H), 7.17 (br t, J = 8 Hz, 1H), 2.51 (s, 3H), 0.22 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 177.18 (C), 142.04 (C), 138.86 (C), 134.84 (CH), 133.50 (CH), 132.03 (CH), 130.97 (CH), 130.66 (CH), 129.63 (CH), 128.04 (CH), 125.70 (CH), 122.35 (C), 119.78 (C), 102.91 (C),

101.12 (C), 92.20 (C), 91.59 (C), 20.55 (CH₃), -0.42 (CH₃); EI-MS m/z 316 (M⁺, 33), 301 (100).

3d: BaMnO₄ (356.0 mg, 1.38 mmol) was added to a solution of **6d** (221.1 mg, 0.69 mmol) in CH₂Cl₂ (15 mL) at room temperature. The reaction mixture was stirred for 17 h, filtered through Celite and evaporated. The residue was chromatographed (10:1Hexane/EtOAc) to give **3d** as a yellow solid (181.8 mg, 83%): ¹H NMR (CDCl₃, 300 MHz) δ 8.10 (dd, J = 7.7, 1.6 Hz, 1H), 7.61 (dd, J = 6.9, 1.6 Hz, 1H), 7.50-7.40 (m, 4H), 7.30-7.25 (m, 2H), 2.34 (s, 3H), 0.22 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 177.37 (C), 138.86 (C), 138.27 (C), 134.87 (CH), 133.50 (CH), 132.11 (CH), 131.61 (CH), 131.05 (CH), 130.21 (CH), 128.41 (CH), 128.12 (CH), 122.49 (C), 119.89 (C), 102.85 (C), 101.21 (C), 93.59 (C), 87.68 (C), 21.03 (CH₃), -0.36 (CH₃); EI-MS m/z 316 (M⁺, 33), 301 (100), 242 (19).

3e: BaMnO₄ (369.0 mg, 1.44 mmol) was added to a solution of **6e** (230.4 mg, 0.72 mmol) in CH₂Cl₂ (20 mL) at room temperature. The reaction mixture was stirred for 3H, filtered through Celite and evaporated. The residue was chromatographed (9:1Hexane/EtOAc) to give **3e** as a yellow oil (205.9 mg, 90%): ¹H NMR (CDCl₃, 300 MHz) δ 8.09 (dd, J = 7.4, 1.3Hz, 1H), 7.61(dd, J = 7.7, 1.6 Hz, 1H), 7.54 (br d, J = 8.2Hz, 2H), 7.49 (td, J = 7.4, 1.6 Hz, 1H), 7.43 (td, J = 7.6, 1.5 Hz, 1H), 7.20 (br d, J = 8.0 Hz, 2H), 2.39 (3H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 177.61 (C), 141.48 (C), 139.07 (C), 134.94 (CH), 133.20 (CH), 132.11 (CH), 131.12 (CH), 129.39 (CH), 128.16 (CH), 122.55 (C), 117.10 (C), 102.90 (C), 101.25 (C), 94.02 (C), 87.89 (C), 21.74 (CH₃), -0.27 (CH₃). Anal. Calcd for C₂₁H₂₀OSi: C, 79.70; H, 6.37. Found: C, 79.38; H, 6.16.

Thermal cyclization of diaryldiynones in 1,2-dichlorobenzene. General procedure: A solution of 3a-e in 1,2-dichlorobenzene (0.2 M for 3b, 0.06-0-09 M for 3a and 3c-3e) was heated under refluxing conditions for the stated time (Table 1). The solvent was evaporated, and the residue was chromatographed (gravity column, 30:1 Hexane/EtOAc).

2-Methoxy-6-trimethylsilylbenzo[*a*]**fluorene-11-one** (**7a**). ¹H NMR (C_6D_6 , 500 MHz) δ 8.84 (d, J = 2.5 Hz, H-1), 7.95 (s, H-5), 7.64 (d, J = 5.9 Hz, H-7 or H-10), 7.63 (d, J = 5.9 Hz, H-10 or H-7), 7.33 (d, J = 9.0 Hz, H-4), 7.09 (dd, J = 9.0, 2.6 Hz, H-3), 7.00 (td, J = 7.6, 1.2Hz, H-8 or H-9), 6.81 (t, J = 7.6 Hz, H-9 or H-8), 3.52 (s, 3H), 0.29 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 196.24 (C), 161.21 (C), 151.40 (C), 144.95 (C), 142.70 (CH, C-5), 135.22 (C), 133.60 (CH), 132.08 (C), 130.10 (CH), 129.31 (CH), 129.20 (C), 128.63 (CH), 125.81 (C), 123.62 (CH), 119.96 (CH), 116.87 (C), 101.61 (CH, C-1), 55.54 (CH₃), 0.29 (CH₃). No long range correlation was observed between the downfield signals (δ 8.84 and 7.95) and the carbonyl signal. EI-MS m/z 332 (M⁺, 98), 317 (100), 289 (47).

The ¹H NMR assignment was based on a COSY experiment (C₆D₆, 500 MHz). The ¹³C NMR assignments were based on HMQC and HMBC experiments (CDCl₃, 75 MHz).

6-Trimethylsilylbenzo[a]fluorene-11-one (**7b**). ¹H NMR (CDCl₃, 300 MHz) δ 9.06 (dd, J = 8.5, 1.1 Hz, 1H), 8.16 (s, 1H), 7.77 (br d, J = 8.2 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.65-7.62 (m, 1H), 7.62-7.51 (m, 1H), 7.47-7.40 (m, 2H), 7.26 (td, J = 7.4, 0.9 Hz, 1H), 0.55 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ 196.52, 151.30, 145.47, 143.50, 135.41, 134.11, 133.72, 132.62, 130.68, 130.27, 129.10, 128.85, 127.34, 126.98, 124.62, 124.05, 123.97, 0.66; EI-MS m/z 302 (M⁺, 100), 287 (96), 259 (56).

2-Methyl-6-trimethylsilylbenzo[a]fluorene-11-one (**7c**). ¹H NMR (CDCl₃, 500 MHz) δ 8.87 (d, J = 0.6, 1H), 8.12 (s, 1H), 7.69-7.64 (m, 3H), 7.45 (td, J = 7.6, 1.1Hz, 1H), 7.28-7.25 (m, 2H), 2.56 (s, 3H), 0.57 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz; DEPT) δ 196.60 (C), 151.40 (C), 145.51 (C), 143.26 (CH), 140.70 (C), 135.49 (C), 134.02 (CH), 132.20 (C), 131.36 (C), 130.96 (C), 129.30 (CH), 128.99 (CH), 128.69 (CH), 126.75 (C), 123.93 (CH), 123.90 (CH), 123.49 (CH), 22.64 (CH₃), 0.71 (CH₃); EI-MS m/z 316 (M⁺, 100), 302 (99), 243 (11).

3-Methyl-6-trimethylsilylbenzo[*a*]**fluorene-11-one** (**7d**). ¹H NMR (CDCl₃, 500 MHz) δ 8.96 (d, J = 8.6 Hz, 1H), 8.10 (s, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 7.2Hz, 1H), 7.57

(s, 1H), 7.46-7.43 (m, 2H), 7.27 (t, J=7.4 Hz, 1H), 2.51 (s, 3H), 0.56 (s, 9H); 13 C NMR (CDCl₃, 125 MHz; DEPT) δ 196.67 (C), 150.41 (C), 145.67 (C), 142.77 (CH), 136.75 (C), 135.40 (C), 134.10 (CH), 134.03 (C), 132.63 (CH), 132.53 (C), 128.88 (CH), 127.76 (CH), 127.35 (C), 124.37 (CH), 123.99 (CH), 123.81 (CH), 113.02 (C), 22.12 (CH₃), 0.67 (CH₃); EI-MS m/z 316 (M⁺, 100), 301 (82), 229(10).

4-Methyl-6-trimethylsilylbenzo[*a*]fluorene-11-one (7e). ¹H NMR (CDCl₃, 300 MHz) δ 8.96 (d, J = 8.4 Hz, H-1), 8.39 (s, H-5), 7.67 (d, J = 7.6 Hz, H-7), 7.63 (dt, J = 7.1, 0.6 Hz, H-10), 7.48 (dd, J = 8.5, 6.9 Hz, H-2), 7.43 (td, J = 7.6, 1.3Hz, H-8), 7.29-7.24 (m, H-3 and H-9), 2.69 (s, 3H), 0.56 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 196.08 (C), 150.32 (C), 144.85 (C), 138.91 (CH), 135.00 (C), 134.76 (C), 133.61 (CH), 132.33 (C), 131.61 (C), 130.54 (C), 129.65 (CH), 128.59 (CH), 127.34 (CH), 127.11 (C), 123.54 (CH), 123.43 (CH), 122.40 (CH), 19.41 (CH₃), 0.17 (CH₃); EI-MS m/z 316 (100, M⁺), 301 (82), 273 (45).

The ¹H NMR assignment was based on a NOESY experiment (500 MHz, CDCl₃).

The figure shows the observed nOe enhancements.

9-Methoxy-5-trimethylsilylbenzo[*b*]fluorene-11-one (8a). ¹H NMR (CDCl₃, 500 MHz) δ 8.70 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.0 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.52 (td, J = 7.5, 1.3Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.34 (t J = 7.5 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 4.00 (s, 3H), 0.60 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 193.20 (C), 157.85 (C), 147.57 (C), 146.57 (C), 142.67 (C), 136.77 (C), 133.56 (CH), 132.21 (C), 128.73 (CH), 128.12 (CH), 126.45 (CH), 124.51 (C), 124.03 (CH), 122.29 (CH), 121.20 (C), 104.90 (CH), 55.66 (CH₃), 3.17 (CH₃), (one carbon signal was not observed); EI-MS m/z 322 (100, M⁺), 317 (82), 273 (21).

5-Trimethylsilylbenzo[*b***]fluorene-11-one (8b).** ¹H NMR (CDCl₃, 500 MHz) δ 8.16 (s, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.80-7.76 (m, 2H), 7.56-7.43 (m, 3H), 7.33 (td, J = 7.5, 0.8 Hz, 1H), 0.62 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ 193.15, 146.90, 146.74, 141.57, 136.61, 135.05, 133.82, 133.00, 132.70, 131.12, 129.89, 128.78, 127.80, 126.57, 126.49, 126.25, 124.13, 3.16; EI-MS m/z 302 (M⁺, 86), 287 (100), 259 (54).

9-Methyl-5-trimethylsilylbenzo[*b***]fluorene-11-one (8c).** ¹H NMR (CDCl₃, 500 MHz) δ 8.43 (d, J = 0.8 Hz, 1H), 8.00 (d, J = 8.3Hz, 1H), 7.82 (d, J = 7.3Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.56 (td, J = 7.8, 1.3Hz, 1H), 7.42 (dd, J = 8.3, 7.0 Hz, 1H), 7.37 (td, J = 7.3, 0.8 Hz, 1H), 7.31 (d, J = 7.0 Hz, 1H), 2.75 (s, 3H), 0.63 (s, 9H); EI-MS m/z 316 (M⁺, 89), 301 (100), 273 (38).

8-Methyl-5-trimethylsilylbenzo[*b***]fluorene-11-one (8d).** ¹H NMR (CDCl₃, 500 MHz) δ 8.09 (s, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.63 (br s, 1H), 7.52 (td, J = 7.5, 1.1Hz, 1H), 7.35 (dd, J = 8.4, 1.4 Hz, 1H), 7.32 (td, J = 7.4, 0.8 Hz, 1H), 2.72 (s, 3H), 0.61 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz; DEPT) δ 193.82 (C), 147.32 (C), 146.59 (C), 140.17 (C), 137.03 (C), 136.57 (CH), 134.89 (C), 134.25 (CH), 133.54 (C), 133.36 (C), 130.80 (CH), 130.39 (CH), 130.14 (CH), 129.01 (CH), 126.81 (CH), 126.60 (CH), 124.54 (CH), 21.60 (CH₃), 3.62 (CH₃); EI-MS m/z 316 (M⁺, 98), 301 (100), 273 (52).

7-Methyl-5-trimethylsilylbenzo[*b***]fluorene-11-one (8e).** ¹H NMR (CDCl₃, 500 MHz) δ 8.15 (s, H-10), 7.93 (br d, J=0.8 Hz, H-6), 7.81-7.78 (m, H-1, H-4, and H-9), 7.55 (td, J=7.5, 1.3Hz, H-3), 7.36 (td, J=7.5, 0.8 Hz, H-2), 7.30 (dd, J=8.2, 1.5 Hz, H-8), 2.55 (s, 3H), 0.64

(s, 9H); 13 C NMR (CDCl $_3$, 75 MHz; DEPT) δ 193.15 (C), 147.08 (C), 146.69 (C), 141.78 (C), 137.91 (CH), 136.68 (C), 133.84 (C), 133.64 (CH), 132.33 (C), 130.88 (CH), 130.66 (C), 129.57 (CH), 128.65 (CH), 128.20 (CH), 126.39 (CH), 123.99 (CH), 22.08 (CH $_3$), (one carbon signal was not observed); EI-MS m/z 316 (91, M^+), 301 (100), 273 (41).

Long range ¹H-¹³C correlations were observed between the carbonyl carbon (δ 193.15) and H-10 (8.15, s) and H-1 (7.81-7.78 m). The ¹H NMR assignment was based on a NOESY experiment (500 MHz, CDCl₃).

The figure shows the nOe enhancements.

9-Methoxybenzo[*b*]fluorene-11-one (9a). ¹H NMR (CDCl₃, 300 MHz) δ 8.67 (s, 1H), 7.83 (s, 1H), 7.73-7.70 (m, 2H), 7.56 (td, J = 7.5, 1.1 Hz, 1H), 7.50-7.39 (m, 2H), 7.35 (td, J = 7.5, 1.0 Hz), 6.83 (dd, J = 7.6, 1.0 Hz, 1H), 4.01 (s, 3H); EI-MS m/z 260 (M⁺, 100), 217 (75), 189 (28).

Benzo[*b*]**fluorene-11-one** (**9b**). ¹ ¹H NMR (CDCl₃, 500 MHz) δ 8.17 (s, 1H), 7.89 (dt, J = 8.1, 0.6 Hz, 1H), 7.87 (s, 1H), 7.83 (dd, J = 8.1, 0.6 Hz, 1H), 7.75 (dt, J = 8.2, 0.7 Hz, 1H), 7.72 (dt, J = 7.5, 0.8 Hz, 1H), 7.56 (td, J = 7.4, 1.1Hz, 1H), 7.55 (td, J = 8.1, 1.3Hz, 1H), 7.47 (td, J = 8.1, 1.2Hz, 1H), 7.35 (dt, J = 7.4, 0.9 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz; DEPT) δ 193.53 (C), 145.28 (C), 138.84 (C), 137.36 (C), 136.62 (C), 135.43 (CH), 134.08 (C), 133.24 (C), 131.24 (CH), 129.61 (CH), 129.42 (CH), 129.19 (CH), 127.36 (CH), 126.13 (CH), 124.90 (CH), 121.41 (CH), 119.48 (CH); EI-MS m/z 230 (M⁺, 100), 202 (22).

9-Methylbenzo[*b*]**fluorene-11-one** (**9c**). ¹H NMR (CDCl₃, 500 MHz) δ 8.40 (s, 1H), 7.89 (s, 1H), 7.79 (d, J = 7.4 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.1Hz, 1H), 7.58 (td, J = 7.4, 1.0 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.37 (td, J = 7.5, 0.8 Hz, 1H), 7.33 (d, J = 7.0 Hz, 1H), 2.74 (s, ·3H); ¹³C NMR (CDCl₃, 125 MHz; DEPT) δ 193.82 (C), 145.27 (C), 138.51 (C), 138.12 (C), 137.67 (C), 136.68 (C), 135.39 (CH), 133.23 (C), 132.93 (CH), 129.54 (CH), 129.21 (CH), 128. 36 (CH), 127.61 (CH), 124.89 (CH), 122.53 (CH), 121.40 (CH), 120.11 (CH), 30.11 (CH₃); EI-MS m/z 244 (M⁺, 100), 215 (43).

8-Methylbenzo[*b*]**fluorene-11-one** (**9d**). ¹H NMR (CDCl₃, 500 MHz) δ 8.09 (s, 1H), 7.82 (s, 1H), 7.74 (dd, J = 7.5, 0.7 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.69 (dd, J = 7.5, 0.7 Hz, 1H), 7.66 (br s, 1H), 7.55 (td, J = 7.5, 1.1Hz, 1H), 7.38 (dd, J = 8.4, 1.4 Hz, 1H), 7.33 (td, J = 7.5, 0.9 Hz, 1H), 2.50 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz; DEPT) δ 193.74 (C), 145.46 (C), 138.06 (C), 137.32 (CH), 136.55 (C), 135.48 (C), 135.39 (CH), 134.27 (C), 133.29 (C), 131.59 (CH), 130.46 (CH), 129.36 (CH), 128.97 (CH), 125.60 (CH), 124.85 (CH), 121.25 (CH), 119.30 (CH), 21.95 (CH₃); EI-MS m/z 244 (M⁺, 100), 215 (41).

7-Methylbenzo[*b*]**fluorene-11-one** (**9e**). ¹H NMR (CDCl₃, 500 MHz) δ 8.13 (s, H-10), 7.79 (d, J = 8.1Hz, H-4), 7.78 (s, H-5), 7.75 (dt, J = 7.4, 0.8 Hz, H-9), 7.71 (dt, J = 7.5, 0.9 Hz, H-1), 7.61 (s, H-6), 7.55 (td, J = 7.5, 1.2Hz, H-2), 7.34 (td, J = 7.4, 1.0 Hz, H-3), 7.30 (dd, J = 8.3, 1.6 Hz, H-8), 2.52 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz; DEPT) δ 193.15 (C), 144.85 (C), 139.33 (C), 138.55 (C), 137.18 (C),136.26 (C), 134.87 (CH), 132.08 (C), 131.74 (C), 130.57 (CH), 129.00 (CH), 128.12 (CH), 125.52 (CH), 124.35 (CH), 120.90 (CH), 118.47 (CH), 21.84 (CH₃); EI-MS m/z 244 (100, M⁺), 215 (43).

-

⁽¹⁾ Latif, A.; Soliman, G. *J. Chem. Soc.* **1944**, 56. Streiwieser, A.; Brown, S. M. *J. Org. Chem.* **1988**, 53, 904. Rodríguez, D.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. *Org. Lett.* **2000**, 2, 1497.

The 1H NMR assignment was based on NOESY experiment (300 MHz, CDCl₃) and HMBC experiments (CDCl₃, 75 MHz). Long range 1H - 13 C correlations were observed between the carbonyl carbon (δ 193.15) and H-10 (8.13, s) and H-1 (7.71, dt).

The figure shows the nOe enhancements (only distinct cross-peaks).